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Nonlinear wave interactions in shear flows. 
Part 1. A variational formulation 
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A modified version of Bateman’s variational formulation of the incompressible 
Navier-Stokes equations and boundary conditions (see Dryden, Murnaghan & 
Bateman 1956) is introduced. This is employed to examine a particular nonlinear 
problem of hydrodynamic stability which was treated previously, using a ‘direct ’ 
approach, by Craik (1971). This problem concerns the resonant interaction a t  
second order of a triad of wave modes in a parallel shear flow. 

The present method is conceptually attractive; it also has the major advantage 
over the ‘direct’ method of a substantial reduction in algebraic complexity, 
which allows results to be derived far more readily. Also, some further improve- 
ments are made upon Craik’s previous analysis. Such a variational approach 
may often be simpler than present conventional methods of tackling nonlinear 
viscous-flow problems. The present paper shows how other problems of nonlinear 
stability and wave interactions may be tackled in this way. 

1. Introduction 
In  the analysis of weakly nonlinear systems with nearly periodic solutions, 

variational principles (e.g. Whitham 1967) can lead to overwhelming algebraic 
simplifications on employing averaging methods (Krylov & Bogoliubov 1947; 
Mahony 1972). For instance, the variational analysis by Simmons (1969) of 
resonant interactions among water waves is decisively simpler than earlier 
analyses (e.g. Phillips 1960; McGoldrick 1965) based directly on Euler’s equations 
of motion; likewise, the analysis of wave interactions in plasmas (Boyd & Turner 
1972, 1973) is greatly simplified by averaged Lagrangian methods. 

For dissipative systems, such variational techniques are less well developed. 
In  particular, problems of nonlinear hydrodynamic stability are normally dealt 
with ‘directly’ using the Navier-Stokes equations. However, Davey (1972), 
following Benney & Newell (1967), has modified Whitham’s theory to incorporate 
dissipation in a heuristic manner, in order to examine the evolution of a weakly 
nonlinear wave in a viscous fluid. Whereas the ‘direct’ method of multiple scales 
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applied to the Navier-Stokes equations (e.g. Stewartson & Stuart 1971 ; DiPrima, 
Ekhaus & Segel 1971) may be long and intricate, Davey’s method affords a 
simple derivation of the governing equation. Unfortunately, it yields only the 
form of this equation, involving one or more unknown coefficients; to find these 
coefficients a more complete analysis is required. 

For nonlinear ‘ non-self-adjoint ’ operators, the construction of variational 
principles is not well understood (see Finlayson 1972b, p. 312). Nevertheless, 
a variational formulation of the full incompressible Navier-Stokes equations has 
long been available (Dryden, Murnaghan & Bateman 1956; see also Finlayson 
1972a, b) .  In  this, the variational integral is not a straightforward functional of 
the velocity vector u and pressure p [Millilian (1929) and Finlayson (1972a) have 
shown that a variational integral of the latter kind exists only if u x (V x u) or 
(u . V )  uis zero]. Instead, it involves certain additional dependent variables, which 
may be thought of as an ‘adjoint ’ or ‘image’ system, but which have no direct 
physical significance. 

Schechter (1 966) reviews various variational formulations for continuous 
systems and discusses their relationship to the concept of a local potential intro- 
duced by Glansdorff & Prigogine (1964). (A local-potential formalism for the full 
Navier-Stokes equations has apparently not yet been derived, though it seems 
likely that this could be done without much trouble; the two-dimensional 
boundary-layer equations are discussed by Schechter.) In discussing the relative 
merits of the various formulations as means for developing numerical approxi- 
mations, Schechter strongly favours the local-potential approach and concludes 
that “the use of ‘image ’ systems as a basis for approximation has been shown to 
be exceedingly complex and as a consequence is not of significant value. The 
associated [adjoint] functions must satisfy complicated coupled equations which 
are devoid of physical meaning. The use of this method is not recommended.” 
These sentiments are echoed by Finlayson (1972b), who states that, as a basis for 
computation, “ t’here appears no important use for [Bateman’s] variational 
principle ”. 

Despite Schechter’s and Finlayson’s doubts as to its usefulness, a modified 
version of Bateman’s formulation is employed here to examine a problem in 
nonlinear hydrodynamic stability in which dissipation plays an essential role. 
This variational approach turns out to be much simpler, algebraically, than the 
conventional ‘direct’ analysis of the same problem (Craik 1971); and we believe 
that this may often be the case in problems of nonlinear wave interactions con- 
cerning viscous fluids. To the authors’ knowledge, this is the first time that 
Bateman’s variational formulation has been put to practical use. 

In  the next section, a modified version of Bateman’s variational formulation 
is outlined. Section 3 provides an introduction to the particular problem tackled 
and $5 4 and 5 contain the analysis of this problem, leading to the second-order 
equations governing the evolution of the respective nonlinear disturbances. An 
oversimplification present in Craik’s previous (1 971) analysis is here properly 
dealt with. A brief appraisal of the variational method is given in 5 6. 

Of course, the variational method has wider applications in nonlinear stability 
theory than that discussed here. For instance, the restriction in the present work 
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to purely temporal modulation may be removed to deal with the evolution of 
localized disturbances such as those investigat.ed in the series of papers by 
Hocking, Stuart and Stewartson (Hocking & St'ewartson 1971, 1972; Hocking, 
Stewartson & Stuart 1972). The particular example treated here serves to 
demonstrate the potential usefulness of the variational method as an analytical 
tool, despite current belief in its lack of utility. 

2. The variational formulation 
We introduce a Cartesian co-ordinate system xd (i = I, 2, 3) and denote by ui 

and p the velocity vector and pressure of an incompressible fluid of uniform den- 
sity p and viscosity p. The fluid occupies a region bounded by a fixed surface S, 
consisting of a part S' on which is prescribed a known distribution 4 of surface 
force per unit area and a part S - S' on which the velooity vector is given as uy. 
(Mixed boundary conditions might also be incorporated if required ; for example, 
the normal velocity component and the t'angential stresses might be given on 
some part of the boundary, or part of S might be a deformable fluid surface (see 
Usher 1974)) but such cases are omitted here.) A known body force Xi per unit 
mass acts throughout. 

We shall use a version of Bateman's variational formulation (see Dryden et al. 
1956; also Finlayson 1972a)) which will be modified to incorporate all the appro- 
priate boundary conditions. I n  Cartesian tensor notation, Bateman's variational 
integral is 

(2.1) I I = It; { s, LdT + js, H1 dS) dt, 

L = +Eii(pij+puiui) + p ( ~ , & , , + U , x ~ ) + P u ~ , ~ ,  
MI -pliUjuiuj- UiFi, 
pij = ~ 8 i j - , ~ ( ~ i , j + ~ j , i ) ,  Eij &,j+q,i ,  

where Sii is the Kronecker delta and li denotes a component of the unit outward 
normal a t  each point of S'. Also, [to, t l ]  denotes an arbitrary time interval while 
dr and d S  are the elements of volume and surface area respectively. Summation 
over repeated indices is implied and the comma notation is used to denote partial 
differentiation with respect to the co-ordinates xi and time t. The quantities Ui 
and P denote auxiliary functions which will henceforth be referred to as the 
' pseudo-velocity vector ' and ' pseudo-pressure ' but which have no direct physical 
significance. 

Although this variational integral yields the correct equations in R and 
boundary conditions on S' (as is shown below), it does not incorporate the 
boundary conditions on S - S'. To include these, it is necessary to add a further 

i (2.2) 

where eijk is the permutation tensor.? 

t If S' = 0 it is necessary that uplids  = 0 in order to preserve continuity. 

14-2 



312 J .  R. Usher and A .  D.  D .  Craik 

The derivation of this expression for M, is complicated by the fact that when 
,LA = 0 the physical boundary condition on S - S' should relate only to the normal 
velocity component: accordingly, normal and tangential components require 
separate treatment. The inclusion of these boundary conditions in the variational 
integral is apparently new; for example, Finlayson merely poses these boundary 
conditions as additional constraints. 

We require I to be stationary (SI = 0) with respect to independent variations 
of ui, p ,  l& and P subject to the restrictions that the variations Sq vanish 
throughout R a t  the instants to and t ,  and that the variations Sui vanish on S - S' 
for all t .  It is readily verified that variations of P and Ui lead to the Navier-Stokes 
equations 

and to the boundary conditions on S' 

Fi = l jpi j  (from Sq) for all x ~ E S ' ,  

which assert that the stress distribution should balance the given surface force 4. 
The variation SP yields no boundary terms on S'. 

The variations in p and ui yield the governing equations and boundary condi- 
tions for the image system {q, P}, namely 

for all xi E R, I q,j = 0 (from Sp) 

q, ,+uj(q, j+q,J  = p - l q i - ( p / p ) V q  (from SUi) 

l i ( P - p U , u j ) - l j ( p E i j + p ~ u j )  = 0 (from Sui) for all x ~ E S ' ,  

and the variation Sp yields no boundary terms on S'. 
The boundary conditions on S - S' require a little more care. Incorporating the 

additional integral of M2, the variation of P still yields no boundary terms, and 
variations in q give 

~l,~(u,-u,p) ( U ~ - U ~ ) + ~ Z ~ E ~ ~ ~ I U - U P I , ~  = 0 (from Sq). (2.3) 

On taking the scalar product with l j  it is seen that 

li(ui - uQ) = 0 for all xi E S - S' 

independently of whether p is zero or non-zero. This is the inviscid boundary 
condition, which prescribes the normal velocity component a t  each point of 
S-S' .  Accordingly, the second term of (2.3) must itself vanish. In  vector 
notation, this is just p(1 x V Iu-upI) = 0, which, if p + 0, asserts that Iu-upl 
remains constant on S - S'. If we now introduce the further requirement that 
u = up at a single point of S - S', we have the boundary conditions for viscous 
flow that 

ui = u,p for all xi E S - S'. 

Variations o f p  and ui give the corresponding boundary conditions for Ui on S - S'. 
Variation o f p  leads immediately to 

liUi = 0 (from Sp), (2.4) 
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corresponding to the inviscid boundary condition for ui. Variation of ui, subject 
to the requirement that Sui = 0 on S - S', leads to 

p l i ~ { S u i , j + S u i , i - ~ i j k ~ S ~ ~ , k }  = 0 for all x ~ E S - S ' ,  

where we have used the fact that the unperturbed ui is equal to ug. But since 
Sui = 0 on S-S' ,  

where n denotes distance along the outward normal to S - S'. This yields 

( S U , ) , ~  = Zia(Sui)/an, ISuI ,, = 1,a ISul/&, 

,U [ l i l j  U j  + V,] a(Su,)/an = 0, 

U, = 0 (from aui) for all x ~ E S - S ' ,  

whenever p + 0. The derivation of the equations and boundary conditions is now 
complete. 

In  concluding this section we note that, if the body force X i  is time independent 
and conservative, so that Xi = - Q,i ,  where s2 is a time-independent scalar 
function, and if Ui and - P are replaced by the physical variables ui and p ,  then 
the expression L is replaced by 

the third term vanishing identically. Using (2.4), we have 

D($puiui-pR)/Dt- a, 

where D/Dt = a/at + uj a/axi, = $peiieij and eij is the rate-of-strain tensor. This 
expression may be recognized as the material time derivative of the kinetic 
minus potential energy per unit volume less the rate of energy dissipation per 
unit volume due to viscosity. Some similarity with the classical Lagrangian 
density is thereby established; but it must be stressed that this expression 
does not yield the Navier-Stokes equations: use of the auxiliary variables is 
unavoidable. 

3. The physical problem 
The primary velocity profile is that of a parallel (or quasi-parallel) shear flow 

ui = [ U ( X , ) , O , O ]  (0 6 x, < I) 
between plane parallel boundaries situated a t  x3 = 0, I and of unbounded extent 
in x1 and x2. All variables are taken to be dimensionless: accordingly, 1 may be 
regarded as unity for channel flows or infinity for boundary layers. We suppose 
that this flow is perturbed by three waves with respective xl, x2 and t periodicities 
of the form exp iOj  (j = 1,2,3) ,  where 

B, = +ax1 + px, - iacR t, e, = $ax1 - px2 - +acR t, e, = ax1 - acR t ,  

01, B and cR being real constants. If such a wave triad exists, its components will 
interact resonantly a t  second order owing to the fact that el + 8, = 0,. Resonant 
triads of this symmetric form comprise two oblique waves propagating at equal 
and opposite angles to the x1 direction and a two-dimensional wave propagating 
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in the xl direction. The intensity of these periodic disturbances depends on both 
x3 and t. 

Craik (1971) has shown that triads of this form are likely to exist for many 
shear-flow profiles and he gives particular examples for the Blasius boundary 
layer and for a piecewise-linear boundary-layer profile. Furthermore, it turns 
out that such triads are of especial interest in nonlinear stability theory, for their 
interaction is of a particularly powerful kind favouring rapid development of the 
oblique waves. A full second-order analysis and discussion of this problem are 
given by Craik. I n  §§4 and 5 Craik's results are rederived via the variational 
formulation described above in order to demonstrate this technique. In  a future 
paper, the analysis will be extended to third order in wave amplitudes with 
interesting results. 

4. Linear theory 

written to a first approximation as 
For the perturbed flow, the physical and auxiliary flow variables may be 

3 3 

j=1 i=l 
u1 = GO(",) + c up@, t ) ,  u1 = up(x, t ) ,  

3 

j = 1  
u., = s Z#'(X, 2)) I 2 

j=l 

3 

U2 = I: Up(x , t ) ,  

u, = c Vf ) (x , t ) ,  
j=1 I 

I 3 3 

j=1 i=1 

where po is the imposed longitudinal pressure gradient necessary to sustain the 
primary flow Go and the superscripts (j) label the respective wave components 
with periodicities exp iOj. The perturbations are assumed to be small compared 
with the primary flow and, to a linear approximation, all other wave components 
and harmonics may be neglected. 

After substituting these expressions into the functional I of ( 2 .  I )  we (at present) 
formally set to zero all third-order product,s of perturbation quantities. (In fact, 
the variational formulation of $ 2  strictly applies only to bounded domains R, but 
extension to regions of infinite volume may be effected without much difficulty. 
Here, the formulation of 5 2 is directly applicable, because the periodicity of the 
flow variables in x1 and x2 allows consideration of a finite region R even though 
the flow domain is of unbounded extent in these co-ordinate directions.) On 
performing appropriate variations, the linearized equations of motion are 
recovered for each wave. I n  particular, variations with respect to P(j) and p(j) 
yield the continuity equations uj:j = Uj:; = 0 (k = 1 , 2 , 3 ) .  For the two- 
dimensional wave, we incorporate these results into (4. 1) by writing 

I++, = q5,(x3) A3(t) exp id,, 
Y3 = x3(x3)  B3(t) exp - i03, 
P(3) = Re {P3(x3) B3(t) exp - i03}, 

p = XIPO+ I: p q x ,  t ) ,  P = c P(j)(X, t ) ,  

(4.2) i 4,) = Re {DI++3), 
Ul3) = Re {DY3} ,  

P(3) = Re{p,(x3) A3V) exp iO3}> 

uL3' = Re { - iqh3}, 
Uh3) = Re {id€'",), 
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where D = iiliix,. Here $, is a perturbation stream function and Y, its analogue 
for the auxiliary variables. The choice of -i03 rather than i03 as the exponent 
for the auxiliary variables is made for later convenience. The various functions of 
x3 and t introduced above are complex valued. 

For the oblique waves, we define velocity components d i p )  and at)  (j = 1 , 2 )  
perpendicular and parallel to the respective wave crests by 

yu;l’ = +&;I) -pap’, yup = pq’ + &&p), 
where y = ($a2 + p2)4 and the corresponding results for uy’ have ,8 replaced by 
- p. Note that y is the total wavenumber of these waves. Again, we incorporate 
the continuity equations by writing 

dip) = Re {I)$j}, 

&?) = Re{z)j(X3)Aj(t)expiBj), p(f) = Re(pj(.r,)Aj(t)expi8j) 

for t’he physical variables. The pseudo-velocity and pseudo-pressure are written 
in the analogous form 

( j  = 1,2)  (4.3) I z@ = Re { - iykj}, $j = Qj(x3)  A,(t) exp iOj 

h h 

( j  = 1, a).  

(4.4) 

(4.5) 

If, as envisaged here, the boundary conditions for the physical quantities are 

the whole boundary S may be taken as comprising these two planes and S‘ set 
to  zero. 

On subst,ituting in I, still suppressing third-order terms in the perturbation 
quant>ities, we may perform variations with respect to the functions $j, xi 
( j  = 1 , 2 , 3 ) ,  uj and should 
yield t,he appropriate equations and boundary conditions of linear stability 
theory. On writing 

I yql ’  = $&p -pop, yup = pup +&..up 
yup = -pU;2) + 1 a . 0 1 2 )  y u p  = + U p  +pup’, 2 2  

h A h 

h A .  

C7p) = Re {DYj}, 

UY) = Re {y(x3)  B j ( t )  exp - iO,}, 
Up)  = Re { i yY j } ,  Yj = xj(x3) B j ( t )  exp - i B j  

h 

P(j) = Re (P,(x3)  B j ( t )  exp -iOj} 

uo = u p  = 0 (j, k = 1 , 2 , 3 ;  x3 = 0, I )  

( j  = 1,3). The variations with respect to xi and 

( j  = 192) (4.6) 1 A,ldAj/dt  = - Bi ’dBj /d t  

A,ldA.Jdt = - BT1dB3/dt 

it is indeed found that #3 satisfies the Orr-Sommerfeld equat’ion and and #2 

its counterpart for oblique waves, while u1 and u2 satisfy equations governing the 
momentum parallel to the oblique wave crests [see equation (5.4) below and 
Craik 1971, equations (3.1) and (3.2)]. On the other hand, variations with respect 
to  the Qr establish xj as the functions adjoint to #,, satisfying the adjoint 
Orr-Sommerfeld equation and its oblique-wave counterpart [cf. Craik 1971, 
equations (3.6)]. (If the exponents of the auxiliary functions had been taken as 
+ i O j  then the functions corresponding to the xi would satisfy the complex 
conjugates of the adjoint equations.) I n  all cases, the appropriate homogeneous 
boundary conditions are satisfied on x, = 0 and r3 = 1. Finally, variations with 
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respect to vj yield equations and boundary conditions for 6 which are trivially 
satisfied on taking I$ to be identically zero, and this we can do without loss of 
generality. 

Here, cR + ic, and c, +GI are the complex phase velocities of the respective 
waves. Also, when the physical variables describe a growing wave (c,,c", > 0) 
the 'pseudo' variables decay in intensity with time, and vice versa, by virtue of 
(4.6). The complex phase velocities are determined as eigenvalues associated with 
the equations and boundary conditions for & or xj. These eigenvalues depend on 
a and 8, and it is hereafter assumed that values of a: and ,8 may so be chosen that 
the condition for resonance is met: namely, that all three waves have the same 
value of cR although c, and i5, may differ. 

5. Second-order theory 
In  proceeding to second order in wave amplitudes, the variational formulation 

is used in a manner reminiscent of that which Simmons (1969) developed for 
resonant gravity-wave interactions in an ideal fluid. Since the perturbations are 
periodic in x1 and x2 we may replace the integrand L in I by its average .E with 
respect to x1 and x2, thereby suppressing the rapidly oscillating terms which do 
not contribute significantly to I when R or [to, tl] is large. (Alternatively, the x1 
and x2 dimensions of R may be chosen as multiples of nla and 2n/,8 respectively.) 
The integral over R is thereby reduced to an integral in x3 only. 

Substituting the expressions (4.1)-(4.4) in L, now retaining third-order terms 
but discarding all terms with zero average with respect to x1 and x2, we have 

5 = z d x 3  = &Re AjBj(Ij+1;+,)+A3B3I3 
- s: j = l  

where * denotes a complex conjugate and the integrals Ik (k = 1, ..., 15) are 
defined as 

wherej takes the values 1 and 2 and 
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(5.3 c, 6) 

(5.3e) 

L4[$ j I  = (D2-Y2) $j, L5[$31 = (D2--OL2) $3, 

G .  3 -  = R- ( D2 - y 2 )  vj - & h ( G 0 -  cR) ~j + ( - l)j i/3DG0$j, 

F. 33 = - - : i4(a2Y-2-  2) 43P 2 -  Y ) 047 + (a'$r2 - 3 )  Dg3(D2 - y2)  $: 
- 3D$?(D2-a2) $3-#F(D2-a2) D#3 

+ ( - l)i 2a/?y-2($3D2v7 + D$3 Dv7 + y2$3 v?)}, 

- (a2Y2 - 2) [D$l(D2 - r2) $2 + D$2(D2 - r2) $11 

- ~ c $ Y - ~ [ v ~ ( D ~ - Y ~ )  $1-v1(D2-y2) $ ~ + D $ ~ D w ~ - D $ ~ D ~ J  

+ 4P2y-"'D(v1v2) + 2@-lD2($1v2 - $ 2 ~ 1 ] } ,  

(5.3.f) 

4 2  = W D [ $ l ( D 2  - r2) $2 + $ 2 P 2  - Y 2 )  $11 

(5 .39 )  

Gj3 = tia{t(3a2 - 2OP2) y-2v?D$, - ( - 1 ) j P d ( 3 a 2  - 4 P )Y-2D$i*D$3 

+ &(a2 - 4/32) 

+ ( - 1)j 2/30~-l$fD~$~). 

Dv? - ( - 1)j  2a/3y-2$3 D2$7 
(5.3h) 

The Reynolds number R of course equals p VL/p,  where V and L are the scales of 
velocity and length chosen for non-dimensionalization. 

Inspection of these expressions confirms that the appropriate linear equations 
for q4i and vj are recovered on disregarding third-order terms, integrating from to 
to t ,  and considering variations with respect to xi and 5. I n  so doing, use is made 
of (4.6) and the fact that the variations of xi and 6 are required to vanish a t  
t = to and t = t,. For later reference, we note that these equations are 

G j - & a ~ I ~ j  = 0 (j = 1 , 2 )  (5.4) I Ll[$jI + &+u$jl = 0 

L3[$31 + ac1L5[$31 = 0 

and have appropriate homogeneous boundary conditions at 5 = 0 and x3 = 1 
corresponding to (4.5). It is clear, by symmetry, that we may take $1 = $2 and 
v - -v2 .  1 -  

We write 

dAJdt = & ~ c I  A1 + a1 A3 A,*, dAJdt = &cI A2 + 2 3 1 , 
a A A * }  (5.5) 

dAJdt = A3 + a3 A1 A,, 

where the aj (j  = 1 , 2 , 3 )  represent second-order interaction parameters whose 
determination is the object of the analysis. Using the linear estimates for xi, 
vj and 5, the right-hand side of (5.1) may be integrated over the interval [to, tl] 
to yield 

3 

- $Re [T =1 AjBjlj+lO]l'. t o  (5.6) 

Here, integration by parts has been used on terms in dB,/dt while the linear 
equations (5.4) and their counterparts for the auxiliary functions eliminate 
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several other terms. Considering independent variations of the complex amplitude 
functions Bj, noting that SBj must vanish a t  t = to and t,, we obtain the results 

aj = I j + & j + l O  ( j  = 1 , 2 , 3 ) ,  (5.7) 

where the integrands of Ij+5 and Ij+lo are evaluated by linear theory. Indeed, 
if we wish, we may normalize the linear solutions $j so that Ij+lo = 1 (j = 1,2,3) .  

These results are equivalent to equations ( 3 . 7 a ,  b )  of Craik (1971). However, 
this straightforward derivation and that of Craik are both oversimplifications of 
the real situation since they do not take into account second-order modifications 
of the functions $i, Urj, vj and I$. I n  fact, it turns out that results (5.7) are correct, 
as is seen from the following improved derivation. We writme 

(j = 1, a), (5.8) I Qf) = Re (A,vj + A, A:- l v j )  exp iOj + 
Y j  = (Bjxj + B3A3-j ,xi + BZPj A,* ljj) exp ( - iej) + Sj 
Y3 = (B,x3 + B, A: lx3 + BIA: ',t3) exp ( - iB,) + IS, 
h 

Up)  = Re (B,A3-, + B,-,d: lq) exp ( - isj) + 
where the Ai and Bi (i = 1 , 2 , 3 )  remain functions o f t  only, $i, vj and xi are the 
linear eigenfunctions of x3 and are functions of x3 
representing second-order modifications. The ek and IS, represent other second- 
and higher-order terms which play no part in the present analysis a t  this order of 
approximation (but which must be considered in the third-order analysis to be 
reported in due course). 

On substituting (5.8) instead of (4.1)-(4.4) into L, retaining third-order terms, 
averaging with respect to x, and x2 and integrating over [to, t l ]  we find that the 
following additional terms must be added to the right-hand side of (5.6): 

lvj, lxi ,  l&, ,I$ and 

: n e 1 ~ ~ ~ a E I ( B , A 3 A ~ J l + B z A 3 A ~ J ~ )  +a(cr-EI)B3A1A2J3)dt+boundary terms, 

Here, as above, we have employed the linear equations to eliminate several 
groups of terms. I n  particular, the second-order auxiliary functions ,xi, l,t,, 
and make no contribution. The 'boundary terms' arise from integration by 
parts and are evaluated a t  the end points to and t,. Like those in (5.6), the varia- 
tions of these boundary terms with respect to Bi are identically zero because of 
the restriction that the variations ISB, must vanish a t  to and t , :  consequently, they 
play no part in the subsequent analysis. 

We note that for linearly neutral waves cI = EI = 0 and these additional terms 
are identically zero, confirming that results (5.7) are correct in this case. When 
cl. and EI are non-zero, variations with respect t o  Bi of expression (5.6) together 
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with these additional terms imply that the estimates ( 5 . 7 )  for a,i (i = I, 2 , 3 )  must 
be corrected by adding the respectlive terms 

- 021 J1/I11, - uEZ J2/Il2, - ~ ( c Z  - E I )  J3/I13. (5.10) 

Since the growth rates 4acz and aEz will typically be small in cases of interest, it is 
clear that (5.7) will yield very good approximations, even' for non-neutral waves. 

The integrals J1, J2 and J3 involve the second-order functions 1$i(x3), which 
have yet to be determined. The equations for 1$i(x3) are readily derived from the 
variational integral by considering variations in xi and equating to zero the 
resulting terms in AzA3Bl,  A:A3B2 and AlA2B3. These are 

(5.11) i L1[l$ll -k &czL4[1$i1 = -aEzL4['$i1 fF23-aiL4[$i1, 

L1[1#21 4- &czL4[1$zl = -uE1-&[%1 +Fi3-%L4[$z1, 

Ld1$31 -k ~ E I  Ld1$31 = - afcz - E I )  L5['&1 -F F12 - a3 L5[$31, 

where the left-hand sides correspond to the linear operators of (5.4) and the 
right-hand sides contain terms in the unknown functions l$i, together with non- 
homogeneous terms which are known from linear theory. (When cz = Ez = 0, 
results (5.7) are just the conditions for solvability of these equations, which 
provide the usual means of deriving such interaction coefficients.) Appropriate 
homogeneous boundary conditions at x3 = 0 , l  are satisfied by the 

Now, since the terms of (5.11) which are linear in l$i do not correspond exactly 
to those of (5.4) when EI and cz - Ez are non-zero, equations (5.11) possess unique 
solutions for every choice of the constants ai. I n  particular, they have unique 
solutions for the values given by ( 5 . 7 ) .  Supposing that these choices are made, we 
may multiply the respective equations by the solutions xi of the adjoint linear 
problems and integrate from 0 to 1 to obtain the results 

That is to say, J1 = J2 = J3 = 0 and the expressions (5.10), which apparently 
represented corrections to the in fact vanish. Accordingly, as claimed above, 
results (5.7) are exactZy valid for non-neutral as well as neutral waves. 

6. Discussion 
We have employed a variational method to determine the second-order 

equations governing the temporal evolution of a resonant triad of waves in a 
viscous shear flow, thereby reproducing the results and improving the derivation 
of Craik (1971). Both conceptually and practically, the variational method has 
several advantages over the 'direct ' method previously used by Craik. 

First, there is a substantial reduction in the algebraic manipulations necessary 
to obtain the governing equations for the respective functions. For example, on 
starting with the momentum equations, it is necessary to eliminate by cross- 
differentiation the pressure terms corresponding to each wave component, and 
this leads to unduly cumbersome expressions for the nonlinear terms, which then 
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require algebraic simplification. In  contrast, variations with respect to the 
appropriate auxiliary functions yield the required equations immediately in the 
present method. 

A further advantage is that the integral expressions for the interaction 
coefficients ai arise naturally from the variational formulation, the adjoint linear 
functions xi being identified with the auxiliary ‘ pseudo-velocity ’ components. In  
the ‘direct ’ method the coefficients ai are normally chosen to satisfy solvability 
criteria for the non-homogeneous differential equations governing the respective 
second-order flow components; but this choice is unambiguous only when 
ci = Ei = 0. For non-neutral waves, the present derivation is preferable. 

Here, the evolution equations for the complex wave amplitudes Ai(t) were 
obtained by considering variations with respect to the complex amplitudes B,(t) 
of the auxiliary functions, while the equations for the modal shapes $&x3), etc. 
arose from variations with respect to the modal shapes xi(x3) ,  etc. of the auxiliary 
system. This procedure is somewhat similar to that of Simmons (1969)) who 
derived the amplitude equations for resonantly interacting capillary-gravity 
waves by considering variations with respect to their real amplitudes and phases ; 
since Simmons’ problem was self-adjoint, there was no need for him to introduce 
auxiliary variables. On the other hand, the techniques of Whitham (1967), 
Benney & Newel1 (1967) and Davey (1972) involve variations with respect to the 
wavenumber and frequency of the waves. This latter approach is inappropriate 
for resonance problems since the waves must remain coupled in phase. But, for 
non-resonant wave interactions such as the self-interaction of a single weakly 
nonlinear wave, the two approaohes would appear to be equivalent provided that 
the primary flow depends only on the cross-flow variable x3. (For an evolving 
primary flow, Whitham’s approach must be used in order to secure a proper local 
representation for the disturbance.) 

A similar variational method may often be employed to advantage in other 
nonlinear stability problems. For example, Stewartson & Stuart (1971) derived 
by a ‘direct ’ method the third-order equation governing the evolution in space 
and time of a two-dimensional disturbance centred on a single wave mode (that 
which is least stable according to linear theory). Application of the variational 
method to this problem is straightforward; for, although the analysis must be 
pursued to third rather than second order and spatial as well as temporal modula- 
tion must be incorporated, fewer physical and auxiliary variables are required 
than in the three-wave interaction examined here. All the results of Stewartson & 
Stuart may be reproduced via the variational method on introduction of the 
appropriate scaled variables. The amplitude equations arise from variation with 
respect to the amplitude of the auxiliary (adjoint) stream function, and explicit 
expressions for the constants a,, a2, d, and k in these equations arise naturally 
without the need to invoke solvability criteria (unlike the simpler variational 
analysis of Davey (1972), which yields the form of the equations but not these 
constants). Likewise, with a little more effort, the amplitude equation of Hocking, 
Stewartson & Stuart (1972) for a three-dimensional disturbance may be 
rederived. 

Like ‘ direct ’ analyses, the variational method becomes increasingly complex 
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the more wave modes there are present and the higher the order of approxiation 
in powers of the wave amplitude; and, because of the need to introduce auxiliary 
as well as physical variables in the variational method, its advantages may some- 
times be outweighed by increased complication in such cases. For instance, in 
tackling the extension to third order of the resonance problem considered here 
(when many more variables must be introduced) little advantage is to be gained 
from the variational method, and we adopt a ‘direct’ analysis to be reported 
subsequently. 

We have demonstrated the usefulness of a variational approach to nonlinear 
stability problems and have gained some insight into the significance of the 
image system in this context. We hope that the extension in 8 2 of Bateman’s 
variational formulation for the Navier-Stokes equations may also prove useful 
in other branches of nonlinear viscous fluid dynamics, despite the long neglect 
of Bateman’s results. 

One of us (J. R. U.) held a Science Research Council research studentship while 
part of this work was performed. 
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